Abstract
Chemical communication in nematodes has been known for over half a century, but the underlying molecular basis remained largely elusive. Recent advances in analytical techniques facilitated the characterization of a modular glycolipid library based on the dideoxysugar L-ascarylose,
which modulates behavior and development in the model organism C. elegans. Ascaroside signaling is highly conserved in nematodes and represents a key factor in nematode chemical ecology. Ascaroside biosynthesis depends on the co-option of the peroxisomal ?-oxidation cycle and in
addition integrates a large diversity of additional building blocks derived from various primary metabolic pathways to give rise to species-specific modular assemblies, thus, transcending the concept of strictly segregated primary versus secondary metabolism.
Subject
General Medicine,General Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献