Spectroscopic Detection of Active Species on Catalytic Surfaces: Steady-State versus Transient Method

Author:

Maeda Nobutaka,Meemken Fabian,Hungerbühler Konrad,Baiker Alfons

Abstract

Discrimination between active and spectator species is an important and demanding task in catalysis research. A comparative study of the Pd-catalyzed CO hydrogenation using in situ diffuse reflectance IR Fourier transform spectroscopy (DRIFTS) in steady-state and dynamic (transient) experiments shows that the information on surface species differs significantly depending on the type of experiment. In order to discriminate between active species and spectator species not involved in the surface reactions, DRIFTS was combined with a transient technique, modulation excitation spectroscopy (MES). This approach allows the detection of surface species responding to a specific periodic external stimulus, i.e.achieved by concentration modulation, and thereby offers excellent potential to unveil features of the surface processes, which are not accessible by steady-state experiments. However, the example of CO hydrogenation shows that the perturbation imposed to the system has to be chosen properly to benefit from the transient technique. Modulation of the CO concentration did not provide deeper insight into the reaction mechanism, whereas periodic changes of the hydrogen concentration provided valuable information concerning the active surface species and the reaction pathway. The study revealed that only a small fraction (about 4%) of CO molecules adsorbed on specific Pd sites reacted with hydrogen, while the majority of adsorbed CO was inactive. The inactive CO molecules overwhelmingly contributed to the spectra measured under steady-state conditions.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3