Solid Oxide Fuel Cells: Systems and Materials

Author:

Gauckler Ludwig J.,Beckel Daniel,Buergler Brandon E.,Jud Eva,Muecke Ulrich P.,Prestat Michel,Rupp Jennifer L.M.,Richter Jörg

Abstract

A solid oxide fuel cell (SOFC) is a solid-state energy conversion system that converts chemical energy into electrical energy and heat at elevated temperatures. Its bipolar cells are electrochemical devices with an anode, electrolyte, and cathode that can be arranged in a planar or tubular design with separated gas chambers for fuel and oxidant. Single chamber setups have bipolar cells with reaction selective electrodes and no separation between anode and cathode compartments. A nickel/yttria-stabilized-zirconia (YSZ) cermet is the most investigated and currently most widespread anode material for the use with hydrogen as fuel. In recent years, however, doped ceria cermet anodes with nickel or copper and ceria as the ceramic phase have been introduced together with ceria as electrolyte material for the use with hydrocarbon fuels. The state-of-the-art electrolyte material is YSZ of high ionic and nearly no electronic conductivity at temperatures between 800–1000°C. In order to reduce SOFC system costs, a reduction of operation temperatures to 600–800°C is desirable and electrolytes with higher ionic conductivities than YSZ are aimed for such as bismuth oxide, lanthanum gallate or mixed conducting ceria and the use of thin electrolytes. Proton conducting perovskites are researched as alternatives to conventional oxygen conducting electrolyte materials. At the cathode, the reduction of molecular oxygen takes place predominantly on the surface. Today's state-of-the-art cathodes are LaxSr1–xMnO3–? for SOFC operating at high temperature i.e. 800–1000°C, or mixed conducting LaxSr1–xCoyFe1–yO3–? for intermediate temperature operation, i.e. 600-800°C. Among the variety of alternative materials, SmxSr1–xCoO3–? and BaxSr1–xCoxFe1–xO3–? are perovskites that show very good oxygen reduction properties. This paper reviews the materials that are used in solid oxide fuel cells and their properties as well as novel materials that are potentially applied in the near future. The possible designs of single bipolar cells are also reviewed.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3