Electrochemical Promotion of Catalysis

Author:

Fóti György,Bolzonella Ivan,Eaves Justyna,Comninellis Christos

Abstract

Recent progress made in our laboratory in the field of electrochemical promotion of heterogeneous catalytic gas reactions is presented. The phenomenon consists of non-Faradaic modification of the catalytic reaction rate as the result of electrochemical polarization of the interface between the catalyst and the solid electrolyte support. Two main aspects are addressed, the description of the phenomenon and the development of bipolar cell configurations suitable for practical applications. It is shown that the necessary condition to achieve electrochemical promotion is the formation of a double layer at the catalyst/gas interface by mechanism of ion backspillover from the solid electrolyte support. Electrochemical promotion is only feasible in an adequate temperature range, limited by the mobility and the lifetime of the promoting ion, and it is favored by high porosity and low film thickness of the catalyst. On the application side, two new cell designs have been developed, a ring-shaped and a multiple-channel configuration, both operated in bipolar polarization mode. The ring-shaped cell is shown to be almost free of current bypass. Feasibility of electrochemical promotion is successfully demonstrated with both configurations. Realization of efficient bipolar cell configurations for electrochemical promotion is very promising in view of future applications in dispersed catalytic systems.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3