Printing Meets Lithography: Soft Approaches to High-Resolution Patterning

Author:

Michel Bruno,Stutz Richard,Schmidt-Winkel Patrick,Schmid Heinz,Rothuizen Hugo,Renault Jean-Philippe,Kind Hannes,Juncker David,Geissler Mattias,Delamarche Emmanuel,Bietsch Alexander,Bernard André,Wolf Heiko

Abstract

We are developing a high-resolution printing technique based on transferring a pattern from an elastomeric stamp to a solid substrate by conformal contact. This is an attempt to enhance the accuracy of classical printing to a precision comparable with optical lithography, creating a low-cost, large-area, high-resolution patterning process. First, we introduce the components of this technique, called soft lithography, and review its evolution. Topics described in detail are the stamp material, stamp architecture, pattern design rules, and printing tools. The accuracy of the prints made by thin patterned elastomeric layers supported on a stiff and flexible backplane is then assessed, and defects are characterized using a new electrical metrology approach. This is followed by a discussion of various printing processes used in our laboratory: (1) thiol printing for high-resolution patterns of noble metals that may also be used as sacrificial masks; (2) confined contact processing with liquids in cavities or channels to chemically convert a substrate or deposit layers of materials or biomolecules; (3) printing of catalysts to mediate patterned deposition of metals; and (4) structured, light-guiding stamps for transferring high-resolution patterns into photoresists. Finally, we compare classical and high-resolution printing approaches, and describe their potential for emerging micro- and nanoscale patterning technologies.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3