Author:
Birkett J. Eddie,Carrott Michael J.,Fox O. Danny,Jones Chris J.,Maher Chris J.,Roube Cécile V.,Taylor Robin J.,Woodhead David A.
Abstract
In order to recycle potentially valuable uranium and plutonium, the Purex process has been successfully used to reprocess spent nuclear fuel for several decades now at industrial scales. The process has developed over this period to treat higher burnup fuels, oxide as well as metal
fuels within fewer solvent extraction cycles with reduced waste arisings. Within the context of advanced fuel cycle scenarios, there has been renewed international interest recently in separation technologies for recovering actinides from spent fuel. Aqueous fuel processing research and development
has included further enhancement of the Purex process as well as the development of minor actinide partitioning technologies that use new extractants. The use of single cycle Purex solvent extraction flowsheets and centrifugal contactors are key objectives in the development of such advanced
Purex processes in future closed fuel cycles. These advances lead to intensified processes, reducing the costs of plants and the volumes of wastes arising. By adopting other flowsheet changes, such as reduced fission product decontamination factors, U/Pu co-processing and Pu/Np co-stripping,
further improvements can be made addressing issues such as proliferation resistance and minor actinide burning, without adverse effects on the products. One interesting development is the demonstration that simple hydroxamic acid complexants can very effectively separate U from Np and Pu in
such advanced Purex flowsheets.
Subject
General Medicine,General Chemistry
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献