High-Resolution Photoelectron Spectroscopy and ab initio Quantum Chemistry

Author:

Willitsch Stefan,Wüest Andrea,Merkt Frédéric

Abstract

The resolution that can be achieved by photoelectron spectroscopy has been continually improved over the past 50 years and is now sufficiently high for the rovibronic energy level structure of polyatomic molecular cations to be measured accurately. Ionisation potentials, molecular constants, and in some cases the potential energy surfaces of both the neutral and the ionic states connected by the photoionising transitions can be extracted from photoelectron spectra and used to test ab initio quantum chemical calculations. Ab initio quantum chemistry represents an essential tool to assign photoelectron spectra and to rationalise the experimental observations. Because either the neutral or the ionised species, or even both, connected by a photoionising transition possesses at least one unpaired electron, photoelectron spectroscopy represents a very convenient method to study openshell molecules. Unfortunately, much fewer highly accurate ab initio quantum chemical calculations have been reported on open-shell than on closed-shell molecules, and such calculations would be desired to assist in the interpretation of photoelectron spectra. This contribution illustrates the fruitful interplay between ab initio quantum chemistry and photoelectron spectroscopy with examples chosen from our recent work on the photoelectron spectra of the rare gas dimers and of small polyatomic hydrides and hydrocarbons. It also briefly reviews the experimental progress that makes it possible today to measure the fine and hyperfine structure in molecular ions by experimental techniques closely related to photoelectron spectroscopy.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3