Application of Special FTIR ATR Techniques for Quantitative Structural Analysis of Thin Surface Layers

Author:

Baurecht Dieter,Reiter Gerald,Hassler Norbert,Schwarzott Michael,Fringeli Urs Peter

Abstract

FTIR ATR spectroscopy is increasingly used for in situ investigations of processes at or near a surface. Particularly when thin layers (biomembranes, monolayers, thin films) are investigated with respect to surface concentration and molecular structure, very sensitive techniques have to be applied in order to achieve an adequate signal-to-noise ratio. This may lead to long measuring times due to extended data accumulation and averaging. However, this can cause new problems with respect to the stability of relevant experimental parameters, such as the sample itself, the spectrometer, and the atmosphere in the spectrometer.In this article we report on two techniques which were developed or improved in our laboratory and successfully applied over past years. Both methods, the so-called single-beam sample reference (SBSR) spectroscopy and the modulation or modulated excitation (ME) spectroscopy, are well suited to compensate instabilities that occur in the course of an experimental series. The SBSR technique converts a single-beam FTIR spectrometer into a pseudo double-beam instrument. By this technique there is always a reference with the same age as the sample available. Moreover, by alternating sample and reference measurements within short time periods, varying environmental conditions such as water vapor concentration in the spectrometer are easily compensated. Moreover SBSR technique enables data evaluation in the conventional single-beam mode (SB) in both the sample (S) and reference (R) channel. This kind of evaluation is important to gain information on the history of S and R. As examples for SBSR and SB applications we report on studies of the interaction of an endotoxin with an immobilized lipid bilayer membrane, as well as on the interaction of TNF? with a TNF? antibody. ME spectroscopy can be applied to systems that show a (pseudo-) reversible response to a periodic excitation. The response of the system measured with time-resolved FTIR spectroscopy is then processed by phase-sensitive detection (PSD). ME spectroscopy is able to determine kinetic constants of a system, allows a hardware separation of overlapping absorption bands, and eliminates all disturbing signal components which do not have the same frequency as the excitation itself. This improves the signal-to-noise ratio dramatically and leads in principal to a stable baseline. The binding of sodium cholate to an adsorbed protein layer of human serum albumin (HSA) is shown as an example that the required sensitivity to study specific molecular interaction is in the ?AU range and can be reached by FTIR ME spectroscopy. In a second example, the measurement of structural changes of PLL induced by temperature modulation shows the feasibility of band separation and indicates the possible determination of kinetic properties of a system.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3