Three-Dimensional Quantitative Assessment of Pedicle Screw Accuracy in Clinical Utilization of a New Robotic System in Spine Surgery: A Multicenter Study

Author:

Ha Byeong-JinORCID,Lee Jong-Min,Yoon Seon-Jin,Kim Byung-Kwan,Lee JunseokORCID,Lee SuhunORCID,Ryu Seungjae,Cha Yongyeob,Hwang Sungteac,Woo Donggi,Lee Chang Kyu,Shin Dong Ah,Ha Yoon,Kuh Sung Uk,Kim Keung Nyun,Son DongwukORCID,Yi SeongORCID

Abstract

Objective: The objective of this study was to evaluate the accuracy of pedicle screw placement in patients undergoing percutaneous pedicle screw fixation with robotic guidance, using a newly developed 3-dimensional quantitative measurement system. The study also aimed to assess the clinical feasibility of the robotic system in the field of spinal surgery.Methods: A total of 113 patients underwent pedicle screw insertion using the CUVIS-spine pedicle screw guide system (CUREXO Inc.). Intraoperative O-arm images were obtained, and screw insertion pathways were planned accordingly. Image registration was performed using paired-point registration and iterative closest point methods. The accuracy of the robotic-guided pedicle screw insertion was assessed using 3-dimensional offset calculation and the Gertzbein-Robbins system (GRS).Results: A total of 448 screws were inserted in the 113 patients. The image registration success rate was 95.16%. The average error of entry offset was 2.86 mm, target offset was 2.48 mm, depth offset was 1.99 mm, and angular offset was 3.07°. According to the GRS grading system, 88.39% of the screws were classified as grade A, 9.60% as grade B, 1.56% as grade C, 0.22% as grade D, and 0.22% as grade E. Clinically acceptable screws (GRS grade A or B) accounted for 97.54% of the total, with no reported neurologic complications.Conclusion: Our study demonstrated that pedicle screw insertion using the novel robot-assisted navigation method is both accurate and safe. Further prospective studies are necessary to explore the potential benefits of this robot-assisted technique in comparison to conventional approaches.

Funder

y CUREXO Inc., Republic of Korea

Korea Institute for Robot Industry Advancement

Domestic Medical Device Training Support Center

Ministry of Health and Welfare

Korea Health Industry Development Institute

Publisher

The Korean Spinal Neurosurgery Society

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3