Use of ChatGPT for Determining Clinical and Surgical Treatment of Lumbar Disc Herniation With Radiculopathy: A North American Spine Society Guideline Comparison

Author:

Mejia Mateo RestrepoORCID,Arroyave Juan SebastianORCID,Saturno Michael,Ndjonko Laura Chelsea MazudieORCID,Zaidat BasharORCID,Rajjoub RamiORCID,Ahmed WasilORCID,Zapolsky Ivan,Cho Samuel K.ORCID

Abstract

Objective: Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the medical field remains limited. This study aimed to assess the feasibility of using ChatGPT to provide accurate medical information to patients, specifically evaluating how well ChatGPT versions 3.5 and 4 aligned with the 2012 North American Spine Society (NASS) guidelines for lumbar disk herniation with radiculopathy.Methods: ChatGPT's responses to questions based on the NASS guidelines were analyzed for accuracy. Three new categories—overconclusiveness, supplementary information, and incompleteness—were introduced to deepen the analysis. Overconclusiveness referred to recommendations not mentioned in the NASS guidelines, supplementary information denoted additional relevant details, and incompleteness indicated omitted crucial information from the NASS guidelines.Results: Out of 29 clinical guidelines evaluated, ChatGPT-3.5 demonstrated accuracy in 15 responses (52%), while ChatGPT-4 achieved accuracy in 17 responses (59%). ChatGPT-3.5 was overconclusive in 14 responses (48%), while ChatGPT-4 exhibited overconclusiveness in 13 responses (45%). Additionally, ChatGPT-3.5 provided supplementary information in 24 responses (83%), and ChatGPT-4 provided supplemental information in 27 responses (93%). In terms of incompleteness, ChatGPT-3.5 displayed this in 11 responses (38%), while ChatGPT-4 showed incompleteness in 8 responses (23%).Conclusion: ChatGPT shows promise for clinical decision-making, but both patients and healthcare providers should exercise caution to ensure safety and quality of care. While these results are encouraging, further research is necessary to validate the use of large language models in clinical settings.

Publisher

The Korean Spinal Neurosurgery Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3