Conversational Artificial Intelligence for Spinal Pain Questionnaire: Validation and User Satisfaction

Author:

Nam Kyoung HyupORCID,Kim Da YoungORCID,Kim Dong HwanORCID,Lee Jung HwanORCID,Lee Jae IlORCID,Kim Mi JeongORCID,Park Joo YoungORCID,Hwang Jae HyunORCID,Yun Sang SeokORCID,Choi Byung KwanORCID,Kim Min GyuORCID,Han In HoORCID

Abstract

Objective: The purpose of our study is to develop a spoken dialogue system (SDS) for pain questionnaire in patients with spinal disease. We evaluate user satisfaction and validated the performance accuracy of the SDS in medical staff and patients.Methods: The SDS was developed to investigate pain and related psychological issues in patients with spinal diseases based on the pain questionnaire protocol. We recognized patients’ various answers, summarized important information, and documented them. User satisfaction and performance accuracy were evaluated in 30 potential users of SDS, including doctors, nurses, and patients and statistically analyzed.Results: The overall satisfaction score of 30 patients was 5.5 ± 1.4 out of 7 points. Satisfaction scores were 5.3 ± 0.8 for doctors, 6.0 ± 0.6 for nurses, and 5.3 ± 0.5 for patients. In terms of performance accuracy, the number of repetitions of the same question was 13, 16, and 33 (13.5%, 16.8%, and 34.7%) for doctors, nurses, and patients, respectively. The number of errors in the summarized comment by the SDS was 5, 0, and 11 (5.2%, 0.0%, and 11.6 %), respectively. The number of summarization omissions was 7, 5, and 7 (7.3%, 5.3%, and 7.4%), respectively.Conclusion: This is the first study in which voice-based conversational artificial intelligence (AI) was developed for a spinal pain questionnaire and validated by medical staff and patients. The conversational AI showed favorable results in terms of user satisfaction and performance accuracy. Conversational AI can be useful for the diagnosis and remote monitoring of various patients as well as for pain questionnaires in the future.

Funder

Ministry of Trade, Industry and Energy

Publisher

The Korean Spinal Neurosurgery Society

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3