Delivery of Transforming Growth Factor-β3 Plasmid in a Collagen Gel Inhibits Cranial Suture Fusion in Rats

Author:

Premaraj Sundaralingam1,Moursi Amr M.2

Affiliation:

1. Orthodontic Section, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska.

2. Department of Pediatric Dentistry, College of Dentistry, New York University, New York, New York.

Abstract

Objective Studies described in this paper were designed to test the hypothesis that an increase in nonviral, plasmid-encoded Tgf-β3 production, localized to the rat posterior frontal suture, prevents programmed suture fusion. Design We developed a gene delivery system based on a dense collagen gel to deliver nonviral plasmids that encode for Tgf-β3. Studies were performed to test the ability of this system to rescue rat cranial suture fusion in vitro and in vivo. Immunohistochemical studies were conducted to characterize the possible mechanisms by which increased production and presence of Tgf-β3 protein interferes with suture fusion. Results Posterior frontal sutures in the Tgf-β3 plasmid–treated group exhibited 77% to 85% less bony bridging than the collagen control and untreated groups after 15 days in culture. In animals treated with Tgf-β3 plasmid or Tgf-β3 protein, there was a significant reduction in suture fusion in the middle region of the posterior frontal sutures when compared with control groups. In this region the Tgf-β3 plasmid–treated group revealed 70% to 75% less bony bridging than control groups in vivo. Conclusions Collagen gel can be formulated to provide release of nonviral plasmid DNA that results in cell transfection and elevated Tgf-β3 protein production. Tgf-β3 is an important regulator of suture fusion, and an increase in plasmid-encoded Tgf-β3 protein is effective in inhibiting programmed suture fusion in rats.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Oral Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3