Interferon Regulatory Factor 6 Controls Proliferation of Keratinocytes from Children with Van der Woude Syndrome

Author:

Hixon Katherine1,Rhea Lindsey2,Standley Jennifer1,Canady Frank J.1,Canady John W.13,Dunnwald Martine1

Affiliation:

1. Department of Pediatrics, The University of Iowa, Iowa City, Iowa.

2. United States Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, Idaho.

3. Department of Plastic Surgery, The University of Iowa, Iowa City, Iowa.

Abstract

Objective Interferon Regulatory Factor 6 (IRF6) is critical for craniofacial development, epidermal differentiation, and tissue repair. IRF6 mutations cause Van der Woude Syndrome (VWS) and Popliteal Pterygium Syndrome. Individuals with VWS exhibit craniofacial anomalies, including cleft lip and palate and lip pits. Furthermore, they have an increased risk for wound-healing complications following surgical repair when compared with patients with nonsyndromic cleft lip and palate (NSCLP). However, nothing is known about the skin of these patients. The objective was to characterize the skin of patients with VWS. We hypothesize that IRF6 is required for proper skin homeostasis in humans. Design Discarded tissue from a hip was collected during surgical alveolar bone graft. Samples from children with VWS harboring IRF6 mutations ( n = 2) were compared with samples from children with NSCLP ( n = 7). Histology was assessed following hematoxylin and eosin staining. The expressions of Proliferating Cell Nuclear Antigen, IRF6, P63, and Keratin 10 were determined by immunofluorescence. Keratinocytes were isolated and their proliferation potential was assessed by colony-forming efficiency assay. Results Hip skin from children with VWS showed a thicker epidermis when compared with that from children with NSCLP. Proliferating Cell Nuclear Antigen staining revealed an increase in proliferation in syndromic tissues when compared with controls. However, P63 and Keratin 10 expression were similar between groups. Finally, keratinocytes from VWS showed increased long-term proliferation when compared with NSCLP. Conclusions These results support, in vivo and in vitro, a previously described role for IRF6 in epidermal proliferation in humans. They further demonstrate a critical function for IRF6 in cutaneous homeostasis.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Oral Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3