Farklı Frez Türlerinin Kullanımında Açığa Çıkan Sıcaklık Değerlerinin Değerlendirilmesi

Author:

AYHAN Mustafa1ORCID

Affiliation:

1. ISTANBUL UNIVERSITY, FACULTY OF DENTISTRY, DEPARTMENT OF CLINICAL SCIENCES, DEPARTMENT OF ORAL, DENTAL AND MAXILLOFACIAL SURGERY

Abstract

Aim: In our study, we aimed to measure the amount of released head by recording it with a thermal camera during the osteotomies made utilizing round, fissure and lindemann burs to the synthetic bone blocks to simulate the mandible ramus region which is often preferred when obtaining autogenous bone from the mouth. Material and Methods: The burs in our study were used at rotational speeds of 10000 rpm and 15000 rpm and feed rates of 60 mm/min and 90 mm/min, and each osteotomy was made with a CNC milling machine in order to standardize the applied force. Results: According to the results of our study, the highest temperatures were observed in the fissure bur groups, and the round bur and lindemann bur groups gave similar results. In addition, when the feed rate is increased from 60 mm/min to 90 mm/min in all groups at constant rotational speed, the heat released increases significantly. When the groups are evaluated within themselves; the temperature values observed at 15000 rpm and 60 mm/min feed rate in the groups using round bur were found to be significantly lower than the group observed at 10000 rpm and 60 mm/min feed rates (p=0.028), in fissure bur groups, the temperature values observed at 10000 rpm and 60 mm/min feed rate were significantly lower than the values observed at 15000 rpm and 60 mm/min feed rates (p=0.028). No statistically significant difference was observed between the heat exchange averages of the 10000 rpm and 15000 rpm groups at a Lindemann bur 60 mm/min feed rate (p=0.182). Conclusion: This study has shown that while the generated heat in the bone is thought to increase when the bur speeds are increased, the head generated according to bur designs can decrease and it is necessary to operate according to the characteristic features of the preferred bur.

Publisher

Medical Records - International Medical Journal

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3