The use of an artificial neural network for predicting the machining characterizing of wood materials densified by compressing

Author:

TOSUN Mustafa1ORCID,SOFUOĞLU Sait Dündar1ORCID

Affiliation:

1. KÜTAHYA DUMLUPINAR ÜNİVERSİTESİ

Abstract

In this study, an approach for artificial neural network (ANN) was presented to predict and control arithmetical mean surface roughness value (Ra), machining properties of wood materials densified by compressing in a computer numerical control (CNC) machine. Black poplar (Populus nigra L.) tree species were used as the experimental material. After specimens were densified by Thermo-Mechanical (TM) method at 0%, 20%, and 40% ratios, machining process of specimens were performed at 1000, 1500, and 2000 mm/min feed speeds and in 12000, 15000, 18000 rpm rotation speed on a CNC vertical wood machining center by using two different cutters. Data used for the training and testing of an ANN. Cutter type, compression ratio, feed rate, and spindle speed were selected as Four parameters. While hidden layer of the Ra model has ten neurons, one hidden layer was used, Compression ratio is the most significant parameter, followed by feed speed for Ra values. surface roughness increases with increased feed rate. Ra values in training, validation, and testing the data set for Ra were 0.97122, 0.8538, and 0.76685, respectively. The Mean Square Error (MSE) value was determined as 0.0019914 test of the network. The proposed ANN model came to agreement with the measured values in predicting surface roughness Ra values of MAPE. The MAPE value was calculated as 6.61, which can be considered a very good prediction (MAPE< 10 % = very good prediction). The study showed that obtained ANN prediction model is a practical and efficient tool to model the Ra of wood. For reducing energy, time and cost in the wood industry (densification and CNC wood machining), current research results can be implemented.

Publisher

Bilge International Journal of Science and Technology Research

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3