Drought-tolerance of transgenic winter wheat with partial suppression of the proline dehydrogenase gene

Author:

Dubrovna O. V.,Priadkina G. O.,Mykhalska S. I.,Komisarenko A. G.

Abstract

The global climate changes and the consequent increase in the number of soil and air droughts during the vegetation period of grain crops require the development of new strategies to adapt plants to those yield-decreasing stressors. A relevant way of increasing drought-tolerance of cereals is the use of biotechnological methods, particularly RNA interference, which can down-regulate the activity of plants’ genes and increase concentration of stress metabolites that perform osmoprotective functions during drought. We studied the tolerance to soil moisture shortage in transgenic plants of winter wheat with partial suppression of the proline dehydrogenase gene, obtained using the technology of short interfering RNAs. We analyzed physiological and biochemical parameters and structural elements of yield productivity of 4 wild genotypes and their transgenic lines with reduced activity of proline dehydrogenase in the conditions of 7-day drought during the late booting–ear emergence. We determined that the presence of double-stranded RNA suppressor of the proline dehydrogenase gene in transgenic lines led to increase in the level of accumulation of free proline in flag leaves. At the same time, its concentration in transgenic lines was higher than in untransformed plants of the wild genotypes in both drought conditions and conditions of sufficient moisture. We found that against the background of water deficiency, the total chlorophyll content in leaves of plants of transgenic lines was significantly higher, and the ratio of carotenoids to chlorophyll was lower than in plants of the wild genotypes, suggesting mitigation of the negative impact of drought on the plants of transgenic lines. Lacking soil moisture, genetically altered lines of wheat had significantly higher parameters of the structure of grain yield compared with untransformed genotypes. At the same time, we observed genotypic difference according to grain productivity in biotechnological plants. Therefore, the results we obtained confirm the perspectives of using the technology of short interfering RNAs to increase tolerance of winter wheat to water deficiency.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

Toxicology,Pharmacology,Microbiology,Physiology,Cell Biology,Biophysics,Biochemistry,Biochemistry, Genetics and Molecular Biology (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3