Prediction of sweet corn yield depending on cultivation technology parameters by using linear regression and artificial neural network methods

Author:

Lykhovyd P. V.

Abstract

Artificial neural networks and linear regression are widely used in particularly all branches of science for modeling and prediction. Linear regression is an old data processing tool, and artificial neural networks are a comparatively new one. The goal of the study was to determine whether artificial neural networks are more accurate than linear regression in sweet corn yield prediction. In the study we used a dataset obtained from field experiments on the technological improvement of sweet corn cultivation. The field experiments were conducted during the period from 2014 to 2016 on dark-chestnut soil under drip irrigated conditions in the Steppe Zone of Ukraine. We studied the impact of the moldboard plowing depths, mineral fertilizer application rates and plant densities on the crop yield. A significant impact of all the studied factors on the sweet corn productivity was proved by using the analysis of variance. The highest yield of sweet corn ears without husks (10.93 t ha–1) was under the moldboard plowing at the depth of 20–22 cm, mineral fertilizers application rate of N120P120, plant density of 65,000 plants ha–1. Data processing by using the linear regression and artificial neural network methods showed that the latter is a great deal better than linear regression in sweet corn yield prediction. Higher accuracy of the artificial neural network prediction was proved by the higher value of the coefficient of determination (R2) – 0.978, in comparison to 0.897 for the linear regression prediction model. We conclude that artificial neural networks are a much better data processing tool, especially, in the life sciences and for prediction of the non-linear natural processes and phenomena. The main disadvantage of the neural network models is their “black box” nature. However, linear regression will not lose its popularity among scientists in the nearest future. Linear regression is a much simpler data analysis tool, it is easier to perform the prediction, but it still provides a sufficiently high level of accuracy.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3