California’s endemic Cornus sessilis in Ukraine

Author:

Klymenko S. V.,Ilyinska A. P.,Kustovska A. V.,Melnychenko N. V.

Abstract

Global climate change and increased land use lead to the loss of biodiversity at all levels of the organization of living organisms – ecosystems, species, landscape population, genetic, molecular biological levels, etc. The reaction of plants to anthropogenic impact, according to experts, may be even stronger than postglacial changes. A shift in the thermal isotherm will cause the plants to either move and adapt, or disappear. Endemic species that make up “biodiversity hotspots” require special attention. Cornus sessilis Torr. ex Durand, the object of our research, is part of one of these points – the California Floristic Province. Researchers are now focusing their efforts on developing a climate change – related biodiversity management strategy. In the case of the threat of extinction of the species in nature, there is a important method of preserving it in culture (ex situ). M. M. Gryshko National Botanical Garden at the National Academy of Sciences of Ukraine (the NBG) pays great attention to the introduction of rare endemic species from the different geographical and floristic regions of the world. The gene pool of Cornus L. s. l. in the NBG consists of more than 30 species and 40 cultivars including the insufficiently researched and little-known Californian endemic C. sessilis. In Europe, it has been grown since 2017 only in Chateau Perouse Botanic Gardens (Saint-Gilles, France) and in Ukraine only the NBG has it. In this article we evaluate the life cycle of the development C. sessilis under conditions of introduction different from the conditions of its natural area. To do this, we used the classic traditional methods of the research on the process of introduction, in particular, botanical plant identification, visual observation, phenology, comparative morphology and biometrics. Morphological descriptors (life form, colour and texture of bark, leaf shape, pubescence character, structure of generative and vegetative buds, inflorescences, flowers, fruits and endocarp) of C. sessilis genotypes introduced to the NBG are identical to those of plants from their natural habitats. The weight of fruits and endocarps were determined by us for the first time. The results of biometric analysis of the size of leaves and fruits showed that the plants of C. sessilis grown in the NBG had the larger leaf blades, but the smaller fruits as compared to those in the wild. In the NBG the plants underwent a full cycle of seasonal development (from the deployment of buds to the leaf fall, inclusive) for 229 days. In general, the phenological strategy of C. sessilis genotypes introduced in the NBG corresponds to that of other species of Cornus s. str., including C. mas L. Our results indicate that C. sessilis, California’s rare endemic species new to Ukraine, has adapted to the new conditions – the plants bear fruits and produce seeds. The experience of successful introduction makes it possible to cultivate a new species to expand the diversity of food, medicinal and reclamation plants of the family Cornaceae as well as the use in synthetic breeding to obtain new cultivars with valuable biological and economic properties. Cornus sessilis compatibility test as rootstocks for other species is important for clarifying the theoretical issues of family ties of species Cornaceae and practical – for widespread reproduction of the required cultivars C. mas breeding in the NBG on a potentially compatible rootstock C. sessilis.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3