Nitrogen-fixing, phosphate-potassium-mobilizing ability of Rahnella bacteria isolated from wheat roots

Author:

Shakirov Z. S.,Mamanazarova K. S.,Yakubov I. T.,Zakiryaeva S. I.,Khamidova K. M.

Abstract

As the number of people on earth increases, so does the need for food. Providing the population with environmentally friendly agricultural food is one of the urgent problems of our time. Currently, the main direction of modern organic farming is the use of biofertilizers. Bacterial preparations are capable of influencing the physiological processes of plants in small quantities, leading to increase in plant productivity. The objective of this work was to study rhizobacteria associated with wheat roots. For this purpose, we took more than 100 isolates of rhizobacteria from the rhizosphere and root surface of wheat plants grown in irrigated fields of Tashkent, Syrdarya, Andijan, Kashkadarya regions. Rhizobacteria were grown on nutrient media of Döbereiner, Ashby, Pikovsky, and Zack, and 25 isolates of associative rhizobacteria were selected based on the characteristics of absorption of molecular nitrogen, mobilization of phosphorus and potassium. They actively dissolved Сa3(PO4)2 and KAlSiO4 for 3 days. They were found to produce organic acids. In organic farming, nitrogen-fixing, phosphorus- and potassium-mobilizing rhizobacteria are of great practical importance, while our experiments on obtaining biological products are considered as an environmentally friendly and cost-effective way to increase crop yields. From the surface of wheat roots grown in different zones of Uzbekistan, when screening for nitrogen fixation, we selected 3 isolates with acetylene reductase activity of 79–91 nmol C2H4/flacon/24h. We determined that bacteria completely mobilized phosphate, forming 100% acid when grown in a medium containing Ca3(PO4)2 for 5 days. The ability of the bacteria to mobilize potassium was studied on a nutrient KAlSiO4-containing medium. The bacteria were observed to mobilize potassium, forming 90–100% acid within 15 days. Based on the study of the 16S rRNA gene of bacteria, we identified rhizobacteria UT3, UT4, and UT9 as Rahnella aquatilis.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

Toxicology,Pharmacology,Microbiology,Physiology,Cell Biology,Biophysics,Biochemistry,Biochemistry, Genetics and Molecular Biology (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3