Selenium in natural environment and food chains. A Review

Author:

Sobolev O.I.,Gutyj B.V.,Soboleva S.V.

Abstract

The analytical review attempts to summarize the results of numerous scientific research conducted by scientists around the world on selenium scattering and accumulation in natural environment, with considerable attention paid to the concentration of this trace element in soils, natural waters and plants. It is shown that selenium content in agricultural products is caused by the processes of physico-chemical and biogenic migration of this element in the biogeochemical food chain. According to the modern classification of trace elements, which is based on their biological significance for living organisms, selenium belongs to the vital group or biogenic elements. As a biotic element, it has unique physicochemical and biochemical properties and with adequately absorbed into the human body has a positive effect on a number of physiological processes. Various research shows that the majority of the world population (except in some regions) today consumes less selenium with the food than necessary and its consumption decreases every year. Insufficient selenium intake in the human body (less than 15–30 μg/day) leads to the development one of the hypomicroelementosis – hyposelenosis. Selenium deficiency is considered as a possible etiological factor in some cardiovascular, cancer, osteoarticular and neurodegenerative diseases that threaten to human life. Providing the human body with selenium in optimal amounts is one of the important conditions of nutrition. A number of countries have developed recommended selenium intake standards for the adults, which range from 55 to 120 μg/day. We can calculate the physiological need for selenium in children and adolescents by extrapolation. The most safe and effective way to maintain the necessary level of selenium for the human body can be achieved only through the poultry and livestock products by mandatory introduction of premixes containing highly effective biologically available selenium forms into animal feed. This will ensure a relatively high level of trace element in meat, eggs, and milk and would eliminate the cases of toxicosis in human population due to buffer effect of animal tissues.

Publisher

Oles Honchar Dnipropetrovsk National University

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3