1. Altimiras, J., & Phu, L. (2000). Lack of physiological plasticity in the early chi cken embryo exposed to acute hypoxia. The Journal of Experimental Zoology, 286(5), 450–456.
2. Antonova, L. V., Matveeva, V. G., & Ponasenko, A. V. (2012). Izmenenie proli ferativnoj aktivnosti i zhiznesposobnosti endotelial'nyh kletok cheloveka v uslovijah gipoksii i posledujushhej re-oksigenacii [Changes of proliferative activity and viability of human endothelial cells under hypoxia and further re-oxygenation]. Fundamentalnye Issledovanija, 7, 273–277 (in Russian).
3. Araujo Júnior, E., Rolo, L. C., Rocha, L. A., Machado Nardozz, L. M., & Moron, A. F. (2014). The value of 3D and 4D assessments of the fetal heart. Interna tional Journal of Women's Health, 6, 501–507.
4. Arjamaa, O., & Nikinmaa, M. (2011). Hypoxia regulates the natriuretic peptide system. International Journal of Physiology, Pathophysiology and Pharmaco logy, 3(3), 191–201.
5. Azar, N., Nasser, M., Sabban, M. E., Bitar, H., Obeid, M., Dbaibo, G. S., & Bitar, F. F. (2003). Cardiac growth patterns in response to chronic hypoxia in a neo natal rat model mimicking cyanotic heart disease. Experimental and Clinical Cardiology, 8(4), 189–194.