Soil nematodes as a monitoring tool of bioenergy crop production management: The case of Miscanthus giganteus cultivation on different soil types

Author:

Stefanovska T.,Skwierzc A.,Zhukov O.,Pidlisnyuk V.

Abstract

The cultivation of bioenergy crops helps produce energy sources for industrial and domestic needs with a zero carbon footprint, which is very attractive in the context of efforts to prevent global climate change. However, this creates certain difficulties in terms of competition for agricultural land with crops used to satisfy human needs and produce food. One potential solution is the use of unproductive abandoned land disturbed by open-pit mining and marginal land contaminated with toxic substances for growing bioenergy crops. The subject of the study was to investigate the influence of soil type on nematode communities and related indicators in the cultivation of bioenergy crops for biofuel production in different geographical areas. A solution to the issue of the role of nematode communities in the hierarchical organisation of bioenergy crop management, which includes tactical and strategic levels, is proposed. A total of 44 nematode genera representing different soil types were found in the studied ecosystems. The lowest abundance of communities was found in Chernozem and Glayic Podzols. The highest abundance was found on Arenosols, Haplic Podzols, and Stagnic Fluvisols. The herbivores were represented by 21 genera. The proportion of herbivorous species usually did not exceed 60% of the total number of nematodes. The representatives of the genus Paratylenchus were found in all the studied soils. The results of multidimensional scaling showed that four dimensions could be identified. Dimension 1 proved to be the most sensitive to changes in the trophic structure of the communities, which is largely due to changes in the role of herbivores in the community. Dimension 2 allowed us to differentiate Arenosols from all other soil types. This difference is explained by functional changes in the structure of the nematode community. The Arenosols community is distinguished by an increase in the enrichment index, which is a consequence of an increase in the proportion of semi-endoparasites. Dimension 3 made it possible to differentiate a group of soils, including Haplich Fluvioglacial, Stagnant Fluvioglacial and Haplic Fluvisols, Stagnic Fluvisols, and Haplic Podzols from Glayic Podzols. Glayic Podzols are characterised by an increased total number of the community, mainly due to parasitic nematodes, as evidenced by the increased level of the plant parasitism index. Dimension 4 was able to capture the specific characteristics of the black soil nematode communities. This soil type is characterised by a higher density of nematode communities, which is explained by a higher proportion of bacteriophages and ectoparasites. Growing bioenergy crops has two different aspects: tactical and strategic. The tactical aspect involves the production of biological energy sources. This aspect includes traditional methods of crop management, including elements of plant disease and pest control, to achieve maximum yield. Thus, the object of tactical management is the plant. In contrast, the strategic aspect is concerned with soil reclamation to restore its functions, thereby paving the way for the possibility of using such soils for food production. The object of strategic management is soil. The tactical aspect involves obtaining direct economic benefits from the extraction of energy raw materials. The strategic aspect involves the restoration of disturbed lands and the creation of preconditions for the restoration of their ecosystem services and their inclusion in food production. Nematode communities can provide information for monitoring processes at both the tactical and strategic levels. The risks of parasitic nematodes and plant diseases should be assessed at the tactical level of management. At the strategic level of management, nematode communities should be used to monitor trophic network assessment and the level of stress in the soil system.

Publisher

Oles Honchar Dnipropetrovsk National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3