Metals and biogenic substances’ migration ability in the «bottom sediments – water» system under natural and experimental conditions

Author:

Linnik Petro M.ORCID,Zhezherya Vladyslav A.ORCID,Zhezherya Tetyana P.

Abstract

The paper considers the results of long-term studies on some chemical elements’ migration (Al, Fe, Ti, Mn, Cu, Zn, Pb, N, P, Si) in the «bottom sediments – water» system of surface water bodies under the effect of different aquatic environment factors. The greatest effect is made by water bodies’ oxygen regime, pH, and presence of dissolved organic substances, in particular humic substances. The migration of manganese, iron, inorganic nitrogen and phosphorus from bottom sediments is controlled mostly by oxygen regime. Migration of these chemical elements significantly increases, when there is oxygen deficiency and anaerobic conditions are formed in the bottom water layer. It has been observed in both natural and experimental conditions. Man- ganese concentration increases in bottom water in 25–50 times, iron – in 1.3–13, inorganic nitrogen – in 5.3–19.3, and inorganic phosphorus – in 2.8–23 times. The dissolved oxygen concentration hardly has any effect on the migration of aluminium, titanium, copper, zinc, lead, and silicon from bottom sediments into the water. The chemical elements’ migration is significantly affected by a decrease in pH of water contacting with bottom sediments and the presence of humic substances in it. High humic substances concentrations promote a reduction in water pH and oxygen content, which is consumed for their oxidation. A case study of several water bodies illustrates the cumulative effect of water pH lowering, anaerobic conditions at the solid and liquid phases’ interface, as well as complexation with humic substances on chemical elements’ migration from bottom sediments. Experimental modeling has shown that the metal migration from bottom sediments occurs both due to their labile fractions and complex compounds with dissolved organic matter, especially with humic substances of low molecular weight (≤2.0 kDa). The share of the metal labile fraction gets higher, when water pH decreases. Under recent climate change, the probability of water’s secondary pollution with different chemicals increases significantly in summer. This is mainly caused by oxygen deficiency, water pH lowering, and reducing conditions at the «bottom sediments – water» interface with hydrogen sulphide being formed. This is especially true for highly eutrophic water bodies subject to human impact. The aquatic environment toxicity can get considerably higher due to the migration of chemicals with strong toxic properties from bottom sediments, as well as labile metal fractions, marked by higher bioavailability for hydrobionts.

Publisher

Oles Honchar Dnipropetrovsk National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3