Preconditioning of a virginiamycin solution for crystallization

Author:

Durnikin D. A.,Yacenko E. S.,Evdokimov I. Yu.,Akopyan V. B.,Dzhavakhiya V. V.,Glagoleva E. V.,Savushkin V. A.,Saveleyeva V. V.

Abstract

Crystallization of antibiotics and other biologically active substances from water solutions represents an important stage of their biotechnological production. The process is based on a sharp reduction of a target compound solubility caused by either temperature decrease, or supersaturation of a solution. A preconditioning of a solution, i.e., its evaporation with a simultaneous temperature decrease seems to be an optimal technical solution, especially advantageous for the treatment of thermolabile substances. This paper describes the technology and equipment for the pre-crystallization treatment of solutions of various substances produced by the biotechnological and chemical industries. The proposed preconditioning technology includes ultrasonic dispersion of a solution and formation of an aerosol with a large integral evaporation surface followed by condensation. Comparing to common tubular evaporators used in various industrial processes, this technology provides about equal productivity and, at the same time, lower energy consumption, since it does not require the heating and the further cooling of a solution needed to evaporate and condensate the solvent, respectively, that prevents undesirable effect of high temperature on thermolabile compounds. In addition, the technology prevents the damage of thermolabile compounds, improves the efficiency of the further crystallization process due to the ultrasound-stimulated formation of crystallizing nuclei, and provides a solvent distillate suitable for the further re-use. The designed device for preconditioning has been successfully tested using culture broth of Streptomyces sp. containing a feed antibiotic virginiamycin; such treatment with the further crystallization in standard crystallizers has resulted in the efficient formation of equal-sized antibiotic crystals.

Publisher

Oles Honchar Dnipropetrovsk National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3