Forecasting suffusion deformation in dispersive soils

Author:

Mokrytskaya T. P.ORCID,Nosova L. О.

Abstract

Suffusion is a dangerous geological process accompanied by the formation of sinkholes, deformations of buildings and structures. Forecast of suffusion processes is a complex scientific problem since it is required to predict a complex process of the formation of new soil structure experiencing certain changes while interacting with the flow. Durin the period of 12.02.2018 – 13.04.2018, a sample of Dnipro loessial soil was filtered with the salt solution in Darcy device. The experi- ment was carried out at the SRI of Geology of Oles Honchar DNU; it is the continuation of the research dealing with experimental study of the dispersive soils as complex natural systems. To study suffusion process in loessial soils, analysis of microaggregate and granulometric composition of a sample of undisturbed structure of Dnipro loessial horizon taken in Tunelna ravine outcrop has been performed. The sample was studied in different states: natural and changed (due to long-term filtration) ones. Results of the use of in- novative method to determine values of the function of particle distribution in terms of their mass and calculations of fractal dimension of the function basing upon the microaggregate analysis have made is possible to forecast values of porosity coefficient and volumetric deformation corresponding to the new quality standards of a complex system – dispersive soil in the state of complete microaggregate disturbance. Algorithm of the microaggregate composition analysis according to the methodology (Riashchenko, 2010) is in the fact that the sample experiences different methods of preparation – thus, evaluations of soil dispersivity are different. Basing upon the obtained results, values of microaggregate coefficient have been calculated, and data on the number of aggregates and initial particles have been taken. It has been determined that the basic size of the aggregates is 0.01-0.005 mm; there is a fewer share of the aggregates of 0.05-0.01 mm; and the fewest share of the aggregates is represented by fine fraction. That indicates the changes in microaggregate composition of soil due to the carrying out of fine fractions and the disturbance of larger aggregates. Calculations of the values of volu- metric soil deformation due to long-term salt solution filtration emphasize the fact that within the zones of technogenic contamination, possible aggregate decay due to chemical effect will result in the formation of structure with denser particle packing, i.e. compaction. If loessial layers with the state changed due to salt solution filtration are subject to mechanical effect, drastic soil loosening and loss of soil stability may be observed.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3