Potential role of cytoplasmic protein binding to erythrocyte membrane in counteracting oxidative and metabolic stress

Author:

Dotsenko O. I.,Mykutska I. V.,Taradina G. V.,Boiarska Z. O.

Abstract

The ability of protein to reversibly bind with membrane components is considered to be one of the oldest mechanisms of cell response to external stimuli. Erythrocytes have a well-developed mechanism of an adaptive response involving sorption-desorption processes, e.g. interactions of key glycolytic enzymes and hemoglobin with band 3 protein. A few publications have shown that under oxidative stress, cytoplasmic enzymes such as catalase, glutathione peroxidase and рeroxiredoxin bind to the erythrocyte membrane. The present work is a continuation of research in this direction to determine the causes and consequences of the interaction of cytoplasmic proteins with the membrane under conditions of oxidative stress and different glucose content. Human erythrocytes were incubated for five hours at 20 °C in an oxidizing medium of AscH – 1 · 10–4 M, Cu2+– 5 · 10–6 M with different glucose content (0–8 mM). Dynamic changes in the accumulation of membrane-bound hemoglobin, the distribution of ligand forms of hemoglobin in the cytoplasmic and membrane-bound fractions, the activity of membrane-associated and cytoplasmic forms of Cu/Zn superoxide dismutase (SOD1) and catalase, H2O2 content in extracellular and intracellular media were recorded. It was shown that binding of catalase and SOD1 to the erythrocyte membrane is initiated by oxidative stress and is a physiological function aimed at complete inactivation of extracellular and H2O2 and protection against their entry into the cell. It was shown that under conditions of glucose depletion and oxidative loading, catalase and SOD1 bind to the erythrocyte membrane, leading to inactivation of these enzymes. Membrane-bound hemoglobin was higher in cells incubated under these conditions than in glucose experiments. Glucose introduced into the incubation medium in an amount 4–8 mM causes complete binding of SOD1 to the membrane of erythrocytes, by involving it in the processes of casein kinase stabilization and glycolytic fluxes regulation. With mild oxidation, the amount of hemoglobin bound to the membrane does not change, indicating the presence of certain binding sites for hemoglobin with membrane proteins. We show that the activity of membrane-bound SOD1 along with the content of ligand forms in the composition of membrane-bound hemoglobin are informative indicators of the metabolic and redox state of erythrocytes.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3