Application of remote sensing data for monitoring eutrophication of floodplain water bodies

Author:

Fedonenko E. V.,Kunakh O. M.,Chubchenko Y. A.,Zhukov O. V.

Abstract

The aim of this article was to investigate the influence of structural features of the floodplain water network on the spatial and temporal dynamics of chlorophyll-a concentration as an indicator of eutrophication. The research was conducted in the waters of the “Dnipro-Orilskiy” Nature Reserve. The geographic information base with polygonal objects which represented water bodies of the reserve was created on the basis of detailed geographical maps and the high resolution space images. The water bodies were characterized using such parameters as the distance of the water body centroid from the nearest shore of the Dnipro River, the area of the water body, the order of the water body and the connectivity of the water body. Chlorophyll-а concentration was estimated based on the surface algal bloom index. The information was obtained about 148 water bodies, 141 of which are water bodies in the floodplain of the Dnipro River. The area of floodplain water bodies within the reserve was 3.28 million m2. The area of floodplain water bodies ranged from 300–232,500 m2. Trophic State Index allows us to estimate the trophic level of Dnipro River waters as mesotrophic, water bodies of first and second order as eutrophic, and water bodies of third and fourth order as hypereutrophic. The dynamics of chlorophyll-a content in water followed the seasonal course of temperatures. The concentration was lowest in the cold period of the year and reached its maximum in the second half of summer. The autumn decrease occurred at the end of September. The seasonal course of air temperature was superimposed on the peculiarities of the temperature regime of a particular water body, which depended on its depth and flow rate. The time, water body area, distance from the Dnipro River channel, connectivity and order of water bodies were the statistically significant predictors of chlorophyll concentration in water and were able to explain 85% of the variation of this indicator. The increase in chlorophyll-a concentration with increasing order of a water body is due to a decrease in the intensity of water exchange and a decrease in the depth of water bodies of higher order. An increase in the order of a water body is accompanied by a branching network of water bodies, the ability of water bodies to clear sediments decreases. Sediment accumulation leads to a decrease in their depth. Warming of shallow ponds and accumulation of organic matter in them are factors of intensive growth of blue-green algae. The evacuation of surplus organic matter, which results from mass vegetation development with excessive nutrient inputs, is a key driver of the eutrophic regime of water bodies. The increasing importance of regulatory processes develops in agreement with an increase in chlorophyll-a concentration in a water body. The importance of the considered factors reaches the highest level in summer time, when simultaneous maximum warming of water bodies and minimum water level in them take place. Accordingly, the differences between deep and relatively cool water bodies and shallow water bodies that warm up quickly, which significantly stimulates the growth of organic mass, reach the greatest contrast. The spatial patterns of variation in chlorophyll-a concentration have a complex multiscale structure, indicating the multiple nature of the acting factors. The spatial variability was represented as a composition of broad-scale and medium-scale spatial processes. The broad-scale process is most dependent on connectivity, whereas for the medium-scale process the leading one is the effect of water body order.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Young-of-the-year fish as bioindicators of eutrophication and temperature regime of water bodies;Environmental Monitoring and Assessment;2024-01-17

2. Differential ecomorphic analysis of urban park vegetation;IOP Conference Series: Earth and Environmental Science;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3