Chelated forms of trace elements improve antioxidant properties and nodulation potential of soybean-Bradyrhizobium symbiosis under insufficient water conditions

Author:

Nyzhnyk T. P.,Kots S. Y.,Pukhtaievych P. Р.,Kots T. A.,Vegera L. V.

Abstract

The development of new nanotechnological approaches and the appearance of preparations with low concentrations of microelements can serve as a basis for promising solutions aimed at increasing stress-protective properties and tolerance to the adverse factors effects. The aim of the study is to show the effectiveness of seed inoculation with nodule bacteria modified by chelate forms of trace elements germanium, ferrum and molybdenum to stimulate antioxidant properties and improve the functioning of the Glycine max (L.) Merr. – Bradyrhizobium symbiosis in insufficient water supply conditions. For this, the symbiotic systems of soybean with active virulent Bradyrhizobium japonicum B1-20 were used with the addition of chelated forms of ferrum, germanium and molybdenum in a dilution of 1:1000 to the culture medium. The chelator was citric acid. At the phenological stages during active nitrogen fixation by soybeans, two models of plant watering regimes were created  ̶ optimal at the level of 60% of the full field capacity and insufficient/water stress at the level of 30% of the full field capacity. Microbiological, physiological, and biochemical methods of plant testing were used. It was found that the addition of rhizobia, chelated forms of germanium or ferrum to the culture medium, induces an increase in the antioxidant properties of plants by activating the key enzymatic complexes of superoxide dismutase and ascorbate peroxidase in soybean nodules and leaves under water stress. The use of chelated forms of ferrum or germanium led to the stimulation of the Bradyrhizobium nodulation potential, which was accompanied by the optimization of the water status and growth processes of soybean plants in insufficient moisture supply conditions. It was shown that inoculation with rhizobia containing chelated forms of molybdenum induced soybean plants sensitive to water deficit, as evidenced by an unstable reaction of enzyme activity, decrease or increase, in nodules and leaves. It inhibits nodulation processes on soybean roots and at the same time disrupts the water status of plants with insufficient water supply. It was concluded that the addition of chelated forms of germanium or ferrum to the rhizobia culture medium is a promising solution for stimulating the protective antioxidant properties of soybeans, which helps to optimize the physiological state of plants under insufficient water conditions.

Publisher

Oles Honchar Dnipropetrovsk National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3