Functional state of the myometrium of rats under chronic in vivo effect of nanostructured ZnO and ТіО2 materials

Author:

Tsymbalyuk O. V.,Davydovska T. L.,Naumenko A. M.,Liashevych A. N.,Lupaina I. S.,Voiteshenko I. S.,Nuryshchenko N. Y.,Skryshevsky V. A.

Abstract

The specificities of the structure and blood supply of the uterus facilitate a considerable accumulation of nanosized xenobiotics, including nanoparticles of metal oxides, in its tissues. Numerous in vitro and in vivo experiments demonstrated that nanoparticles of metal oxides (ZnO and TiO2) have significant cytotoxic activity, caused by oxidative stress induction. However, there is no information about the impact of these nanomaterials on the functional state of the myometrium under chronic exposure on the organism. Tenzometric methods and mechanokinetic analysis were used in our work to investigate the contractile activity of the myometrium of non-pregnant rats. The contractile activity was either spontaneous or induced by oxytocin (the uterotonic hormone) and acetylcholine (the agonist of muscarinic choline receptors) under chronic peroral intake of the ZnO and TiO2 aqueous nanocolloids into the organism. It was found that after burdening of rats with ZnO and ТіО2 aqueous nanocolloids there were no changes in the pacemaker-dependent mechanisms forming the frequency of spontaneous contractions in the myometrium, but there was a considerably induced increase in the AU index of contractions. It was shown that during the oxytocin-induced excitation of the myometrium under both chronic and short-term burdening of the rats with ZnO and TiO2 aqueous nanocolloids, the mechanisms that regulate the intracellular concentration of Ca2+ ions are the target for the nanomaterials. When the rats were burdened with ZnO aqueous nanocolloids for 6 months, during cholinergic excitation there was hyperstimulation of both M3-receptor-dependent mechanisms of Са2+ ions intake via the potential-governed Са2+-channels of L-type into the smooth muscles of the myometrium, and M2-receptor-dependent mechanisms, controlling the intracellular concentration of these cations. Thus, the regularities and mechanisms of the change in the functioning of uterine smooth muscles under chronic intake of the ZnO and TiO2 aqueous nanocolloids were determined in this study.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3