The influence of clonal micropropagation on productivity and differentiation of Mentha pіperіta plant tissues

Author:

Talankova-Sereda T. E.,Kolomiets J. V.,Holubenko A. V.,Nuzhyna N. V.

Abstract

Peppermint grass, as a raw medicinal plant material, has great importance for the pharmaceutical industry. The influence of clonal micropropagation and chemotherapy has been established in vitro on six breeds of Ukrainian selection peppermint plants, in particular on the sprouts’ conductive system structure and tissue development, general biomass accumulation, and in vivo productivity of breeds. The influence of clonal micropropagation and chemotherapy on important productivity indices of the plants has been established in vitro in six breeds of Ukrainian selection peppermint plants as pharmacopeial plants. The linear meter method, the microscopic method, the standard histochemical methods, and the statistical analysis method were used in the studies. A clear tendency to increase in the leaf cover, air-dry leafage and rhizome was observed in breeds of Ukrainian selection peppermint to which propagation and in vitro improvement technology was applied. The air-dry leafage yield significantly increased after in vitro culture from 7.6% in the Lidiia breed to 51.4% in the Chornolysta breed recognized as a state mint standard in Ukraine. The leaf cover increased from 8% to 21% in peppermint plants improved in іn vitro culture. This method promoted essential oil quantity increase from 9.8 to 28.6 kg per hectare. The rhizome yield increased by 6.3–40.4% in all peppermint plants breeds after improvement in in vitro culture on average within one vegetation year. The Lebedyna Pisnіa and Mama breeds were characterised by the most intensive development of all investigated anatomic and morphological indices after in vitro culture: rhizomes yield increased by 40.4% and 40.1%, air-dry leafage by 37.1% and 26.6%, leaf cover by 21.0% and 13.0%, and essential oil quantity per hectare increased by 38.1% and 28.5% accordingly. Anatomical and histochemical studies of sprouts of Ukrainian selection peppermint plants breeds confirmed increase in xylogenesis intensity in the majority of the studied breeds (except Lidiia and Ukrains’ka Pertseva) after in vitro culture improvement. The xylogenesis process was most expressed in the Mama and Chornolysta breeds. Air-dry leafage, rhizome yield, and leaf cover increased in all peppermint plants breeds after in vitro improvement, which could be critical for the pharmaceutical industry.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Engineering

Reference40 articles.

1. Aleksandrova, L. P. (1994). Biosintez fenolnyih soedineniy v protsesse formirovaniya pobega sosnyi obyiknovennoy [The biosynthesis of phenolic compounds during the formation of the shoot of Scots pine]. Krasnoyarsk State University, Krasnoyarsk (in Russian).

2. Andreeva, V. A. (1988). Ferment peroksidaza: Uchastie v zaschitnom mehanizme rasteniy [Peroxidase enzyme: Participation in the plant defense mechanism]. Nauka, Moscow (in Russian).

3. Burhanova, G. F. (2006). Anionnyie peroksidazyi kak komponent ustoychivosti rasteniy pshenitsyi k fitopatogennyim gribam [Anionic peroxidases as a component of the resistance of wheat plants to phytopathogenic fungi]. Bashkir State Agrarian University, Ufa (in Russian).

4. Burlat, V., Oudin, A., Courtois, M., Rideau, M., & St-Pierre, B. (2004). Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. The Plant Journal, 38, 131–141.

5. Derzhavna farmakopeya Ukrayiny [The State Pharmacopoeia of Ukraine] (2014). Ukrayinskiy naukoviy farmakopeyniy tsentr yakosti Likarskih zasobiv, Kharkiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3