Biological activity of soybean seed lectin at the spraying of Glycine max plants against the background of seed treatment with pesticide containing fipronil, thiophanate-methyl, pyraclostrobin as active substances and rhizobial bacterization

Author:

Kyrychenko O. V.,Kots S. Y.,Khrapova A. V.,Omelchuk S. V.

Abstract

Preparations for protecting plants, particularly those with fungicidal activity, continue to be relevant in agricultural production. They are used to effectively combat phytopathogens and ensure high yield of cultivated plants. However, they are among the anthropogenic factors which impose a heavy chemical load on ecosystems. Data about the effects of pesticides on physiological parameters of plants are essential for understanding the main regulatory mechanisms as preconditions to the phytotoxic state of compounds, as well as greater substantial understanding of the functional condition and implementation of adaptive potential of plants during and post stress. An important and relevant task – both practically and theoretically in the conditions of action of fungicide on seeds - is studying the possibilities of application of phytolectines as biologically active compounds with broad spectrum of action, including fungicidal effect, for spraying legumes in order to stabilize their development, ensure effective functioning of legume-rhizobial symbioses and cause fuller realization of productive potential against the background of decrease in chemical pressure on agrocenoses. Therefore, we aimed to evaluate the biological activity of soybean seed lectin (according to the parameters of productivity and functional activity of soybean-rhizobial symbiosis) at the spraying of Glycine max (L.) Merr. plants against the background of seed treatment of pesticide, Standak Top with fungicidal and insecticidal actions on the day of sowing and inoculation with Bradyrhizobium japonicum 634b. We used physiological, biochemical, microbiological and statistical methods of studies. We determined that Standak Top, applied on soybeans that were afterwards inoculated with rhizobia, exerted negative tendency on formation of vegetative mass by plants at the beginning of vegetation, though in the following phases of ontogenesis, their development and productivity reached the level of the control. Nitrogenase activity of symbiosis and the condition of photosynthetic pigment complex (content of chlorophyll and carotenoids and their ratio) were at the level or significantly lower than in the control plants. After spraying soybeans with lectin (without use of the fungicide) in the phase of development of two true leaves, there occurred significant increase in functional activity of the symbiotic system (according to total nitrogenase activity of symbiosis, higher by 1.91 and 1.79 times compared with the controls with inoculation and inoculation + fungicide) and the content of photosynthetic pigments (chlorophylls were higher by 1.12–1.45 times, carotenoids by 1.14–1.39 times) and development of strong leaf apparatus (by 1.33–1.42 times). This caused highest level of realization (by 13.9% and 10.1% higher compared with the controls with inoculation and inoculation + fungicide) of productive potential of cultivated plants. After spraying plants with soybean lectin against the background of use of fungicide, notable and reliable increases occurred in the level of absorption of molecular nitrogen (by 1.72 and 1.52 times according to total activity of symbiosis, compared with the controls with inoculation and inoculation + fungicide), content of chlorophyll (1.25–1.64 times) and carotenoids (1.12–1.42 times) in leaves of soybean, and also plants were actively developing during vegetation (1.12–1.40 times), producing yield that exceeded by 12.8% and 9.1% the controls with inoculation and inoculation + fungicide. Therefore, use of soybean seed lectin for spraying plants against the background of seed treatment of pesticide Standak Top on day of sowing can stabilize and even increase the level of realization of symbiotic and productive potential of soybean-rhizobial symbiosis compared both with the control (inoculation with rhizobia) and the variant with treatment of seeds (rhizobia + fungicide). This indicates on the perspectives of further studies of biological activity of phytolectins aiming at decreasing chemical pressure on ecosystems by leveling out or decreasing the negative impact of chemical means of protection on the plants and symbiosis.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3