Geomechanical characterization of rock mass rating and numerical modeling for underground mining excavation design

Author:

Kimour MohamedORCID,Boukelloul Mohamed L.ORCID,Hafsaoui AbdallahORCID,Narsis S.,Benghadab Khadouja M.,Benselhoub AissaORCID

Abstract

The objective of the study is the geomechanical characterization of the rock mass rating RMR system and numerical modeling for mining underground excavation design of the Djebel El Ouahch tunnel, in Constantine (Algeria).The geological and geotechnical character- ization of the rock mass is important for the design of underground mining excavations. In this article, we present the results of the RMR characterization of the rock mass and the numerical modeling by the finite element method (FEM), under the conditions of the Djebel El Ouahch tunnel, Constantine (Algeria).The RMR system is a useful tool for characterization of the rock mass quality and establishing the appropriate support system. For poor rock (Class IV), the excavation should be top heading and bench 1.0 m – 1.5 m advance in top heading. Support should be installed concurrently with excavation, 10 m from face. Rock bolting should be systematic with 4 m – 5 m long, spaced 1.5 m – 1.5 m in the crown and walls with wire mesh, Shotcrete of 100 m -150 mm in the crown and 100 mm in sides. The steel sets should be light to medium ribs spaced 1.5 m only when required. The rock mass consists of generally poor rocks with average stand- up time of 10 hours for 2.5m span with mass cohesion ranges between 100 kPa – 200 kPa and rock mass friction angle ranges from 15° to 35°. The FEM project due to its precision calculates the safety factor and evaluates the principal deformations and displacements of the rocks mass .The originality of this work lies in the use of two different approaches , the RMR system and numerical method (FEM) for analyzing the quality and evaluation of the deformations and displace- ments of rock mass .This method has become a very common practice in underground mining excavation design.This study illustrates that the results obtained by RMR of the argillite rock mass in the case is 28.00 ,ranging from 21.0 to 40.0 classified as Class IV (Poor Rock), while the results of FEM reveal that in accordance with the poor quality of the rocks, large deformations and displacements were observed around the underground mining excavation, which can be at the origin of the ruptures. The value of the safety factor of the order of 0.95 to 1.24 shows the instability of the excavation, and the appearance of very considerable hazard zones in the argillite layer.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3