Nitrite oxidation by phototrophic bacteria of Chlorobium, Thiocapsa and Lamprocystis genera under the influence of inorganic pollutants

Author:

Moroz O. M.,Zvir G. I.,Hnatush S. O.

Abstract

Pollutants of inorganic nature (acids, alkalis, mineral salts of different composition, metals) change the course of biological processes of environmental purification, but their influence on the physiological properties of phototrophic sulfur bacteria has not been studied enough. The usage of nitrite ions as an electron donor of anoxygenic photosynthesis by cells of phototrophic green and purple sulfur bacteria Chlorobium limicola IMV K-8, Thiocapsa sp. Ya-2003 and Lamprocystis sp. Ya-2003, isolated from Yavorivske Lake, under the influence of the most widespread inorganic pollutants – hydro- and dihydrophosphates, sulfates, chlorides and chlorates, has been studied. It is shown that KH2PO4, K2HPO4, Na2SO4, NaCl and KClO3, present in the van Niel medium with 4.2 mM NaNO2 at concentrations that are 0.5, 1.0, 2.0, 3.0, 4.0 times different from the maximum permissible concentrations (MPC), influenced the biomass accumulation and nitrite ions oxidation by phototrophic green and purple sulfur bacteria. In media with hydro- and dihydrophosphate ions at concentrations 4.0 times higher than the MPC, inhibition of bacterial growth was up to 1.7 times lower than in the control. The biomass accumulation by bacteria in media with chloride and chlorate ions at concentrations 3.0–4.0 times higher than MPC was 2.0–2.8 times lower compared to the control. In the medium with Na2SO4 at concentrations 2.0–4.0 times higher than MPC, the biomass was 2.0–4.0 times lower than in the control. Nitrites’ oxidation by all strains in the media with the studied pollutants was slowed down. The residual content of nitrite ions in media with hydro- and dihydrophosphate, chloride and chlorate ions at their concentrations 4.0 times higher than MPC, exceeded the NO2– content in the control variants up to 1.7 times. If in the medium without pollutants the cells of C. limicola IMV K-8, Thiocapsa sp. Ya-2003 and Lamprocystis sp. Ya-2003 strains oxidized 72.7%, 72.2% and 71.4%, respectively, of nitrite ions present in the medium, then in the medium with sulfate ions at concentration 4.0 times higher than the MPC, bacteria oxidized nitrite ions only at 39.6%, 34.4% and 27.0%, respectively. Oxidation of a lower quantity of nitrites by phototrophic bacteria in the media with inorganic pollutants led to the production by them of a lower quantity of nitrates. The content of NO3– in the media with hydro-, dihydrophosphate and chlorate ions at all concentrations was up to 1.9 times lower than in the control. In media with sulfate ions at concentrations 2.0–4.0 times higher than MPC and chloride at concentration 4.0 times higher than MPC, the content of nitrate ions was 2.1–4.3 and 2.0 times, respectively, lower than in the control variants. Inorganic pollutants stimulated the synthesis of intracellular carbohydrates in C. limicola IMV K-8. If the content of intracellular glucose in cells grown in the medium without pollutants was 10.3 mg/g dry cell weight, then in cells grown in media with K2HPO4, KH2PO4, Na2SO4, NaCl and KClO3 at concentrations 4.0 times higher than MPC, its content increased by 12.2%, 10.7%, 51.6%, 17.1% and 35.9%, respectively. The glycogen content in the cells grown in the medium without pollutants was 45.1 mg/g dry cell weight. Hydro- and dihydrophosphate, chloride and chlorate ions at concentrations 4.0 times higher than MPC stimulated glycogen synthesis in cells by 47.5%, 57.6%, 67.4% and 74.6%, respectively. The glycogen content in cells grown in the medium with Na2SO4 at concentrations 3.0 and 4.0 times higher than MPC increased by 102.9% and 107.5%, respectively. Therefore, it is established that pollutants of inorganic nature affect the physiological properties of photosynthetic sulfur bacteria and thus change the course of biological processes of environment purification, in particular, from nitrite ions.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3