The enrichment technology of slag from metallurgical processing of copper ore concentrate

Author:

Shevchenko G. A.,Shevchenko V. G.,Baranov V. A.,Spassky V. N.

Abstract

The purpose of this research is the development of a technology for the enrichment of slag from metallurgical processing of copper ore concentrate based on     the results of spectral, chemical, sieve and petrographic analysis. The results of spectral analysis indicate the copper content in all three samples of mineral raw materials at more than 1 %. The results of chemical analysis indicated a high copper content in the samples from 13.4 to 17.1%, as well as a high iron content from 9 to 18%. Analysis of the results of the sieve analysis showed that the largest amount of copper is contained in the size classes 0.063–0.05 mm at from 18.6 to 24.1 % and 0.04 mm at from 15.6 to 38 %. In accordance with the petrographic studies, the size of copper grains varies from 0.1–0.3 to 1–5 mm. The most common sizes of copper grains in the studied samples are 0.2-0.3 and 1-2 mm. Based on the results of spectral, chemical, sieve and petrographic analysis, a technology for the enrichment of copper-containing slags has been developed. Gravity wet enrichment technology with a capacity of 5 t/h with Cu recovery in the range of 80–95 % suggests the grinding of raw materials with a constant water supply up to 40 m3/h from the sludge collector. The heavy fractions are fed to a magnetic separator and then to a classifier for the extraction of magnetic concentrate and slag, which after the separation of the fraction of 0.08-0.4 mm with the MVG screen can later be used as a raw material for the building industry. The light fractions after the concentration tables are fed to the classifier, on which the copper concentrate is released. The average density fractions are returned to the closed cycle for further grinding in a ball mill. However, such a wet enrichment scheme requires a continuous water supply and the sludge collector’s presence, which cannot always be ensured. Therefore, the technology of slag dry enrichment with a particle size of 0–100 mm has also been developed. The central apparatus in the proposed enrichment technologies is the MVG vibrating screen, which is designed to separate bulk materials by particle size from 20 microns to several millimeters. Polyfrequency oscillations in the frequency range from several Hz to kHz are implemented on the screen, eliminating blockage of the sieve cells, destruction of the formed aggregates of stuck particles, ensuring their intensive movement in the layer and efficient passage of particles reaching the sieve surface through the cells. This type of vibration makes it possible to achieve much greater efficiency of separation and dehydration of materials than in traditional screens and to ensure continuous self-cleaning of the mesh, which contributes to the process of separation and dehydration. Due to the lack of tension, high durability of the working surface is ensured. Due to the transfer of minimum loads on the base, the screen is installed without arranging special foundations, including on the floors of buildings and structures. A standard- sized row of screens was developed with a screening surface area from 1 to 4 m2 and a different number of tiers.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3