Migration of antibiotics residual quantities in aquatic ecosystems

Author:

Voitsitskiy V. M.,Danchuk V. V.,Midyk S. Vu.,Kepple O. Yu.,Danchuk Z. V.,Shevchenko L. V.

Abstract

The uncontrolled antimicrobial agents use leads to the spread of antibiotic-resistant pathogenic strains. The ingress of antibacterial drugs into surface water through sewage from livestock premises, people's houses, hospitals and during medical and agronomic activities exacerbates this problem. Antimicrobials in surface waters have several ways of developing the process: lethal interaction of antibiotics with hydrobionts, elimination of sensitive taxa and alteration of trophic chains; neutralization of antimicrobials (self-destruction of the molecule, hydrolysis, sorption, abiotic and biotic transformation); non-lethal interaction of antibiotics and hydrobionts with the acquisition of antibiotic resistance signs). There are following indicators proposed to predict the antimicrobial agents impact on the aquatic ecosystem: accumulation factor; the amount of substance per unit mass of plant or animal in one cubic meter of water (mg or mcg per 1m3); the maximum amount of a substance that can be contained in an ecosystem without disturbing its basic trophic properties. The basic principles of a dynamic chamber model construction for studying the effect of antibiotics on the ecosystem are based on the following basic statements: 1) the trophic chain is divided into the chambers in which substance is instantaneously mixed in all parts of the chamber in the same way in any direction; 2) the transfer of the substance from one chamber to another occurs according to the laws of first order kinetics, which is described by the system of differential equations. In this case, transition coefficients of a substance between the chambers are constant. It is advisable to use a dynamic chamber model to analyze the migration pathways of substances in a freshwater non-flowing reservoir. For instance, its simplified version consists of the 3 chambers, namely: water – sediments (silt) – biota. It is advisable to use a stationary chamber model for analysing the pathways of antibiotics which enter into the sea with the river flows.

Publisher

Oles Honchar Dnipropetrovsk National University

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3