Dose-dependent regulation of kidney mitochondrial function by angiotensin II

Author:

Sivertsson EbbaORCID,Balboa AmandaORCID,Schiffer Tomas AORCID,Hansell PeterORCID,Friederich-Persson Malou,Persson Patrik,Palm Fredrik

Abstract

Background: Intrarenal hypoxia has been suggested a unifying pathway to chronic kidney disease (CKD) and increased mitochondria leak respiration, which increases mitochondrial oxygen usage and is one important mechanism contributing to the development of the hypoxia. Previous studies indicate that angiotensin II (Ang II) effects on mitochondria function could be dose dependent. We investigated how moderate and high levels of Ang II affect kidney mitochondria function and pathways of leak respiration. Methods: C57 black 6 mice were treated with either vehicle or Ang II in low dose (400 ng/kg/min) or high dose (1,000 ng/kg/min) for 4 weeks. The function of kidney cortex mitochondria was measured by high-resolution respirometry. Ang II effects on gene expression in kidney tissue were measured by quantitative real-time PCR. Thiobarbituric acids reactive substances were determined as a marker of oxidative stress, and urinary protein excretion was measured as a maker of kidney injury. Results: Low-dose Ang II induced overall mitochondria respiration, without compromising capacity of ATP production. Mitochondrial leak respiration was increased, and levels of oxidative stress were unchanged. However, high-dose Ang II decreased overall mitochondria respiration and reduced mitochondrial capacity for ATP production. Mitochondrial leak respiration was decreased, and oxidative stress increased in kidney tissue. Furthermore, gene expression of mediators that stimulate vasoconstriction and ROS production was increased, while components of counteracting pathways were decreased. Conclusions: In conclusion, Ang II dose-dependently affects mitochondrial function and leak respiration. Thus, Ang II has the potential to directly affect cellular metabolism during conditions of altered Ang II signaling.

Publisher

Uppsala Medical Society

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3