Automated data extraction of electronic medical records: Validity of data mining to construct research databases for eligibility in gastroenterological clinical trials

Author:

Joseph Nora,Lindblad Ida,Zaker Sara,Elfversson Sharareh,Albinzon Maria,Ødegård Øyvind,Hantler Li,Hellström Per M.ORCID

Abstract

Background: Electronic medical records (EMRs) are adopted for storing patient-related healthcare information. Using data mining techniques, it is possible to make use of and derive benefit from this massive amount of data effectively. We aimed to evaluate validity of data extracted by the Customized eXtraction Program (CXP). Methods: The CXP extracts and structures data in rapid standardised processes. The CXP was programmed to extract TNFα-native active ulcerative colitis (UC) patients from EMRs using defined International Classification of Disease-10 (ICD-10) codes. Extracted data were read in parallel with manual assessment of the EMR to compare with CXP-extracted data. Results: From the complete EMR set, 2,802 patients with code K51 (UC) were extracted. Then, CXP extracted 332 patients according to inclusion and exclusion criteria. Of these, 97.5% were correctly identified, resulting in a final set of 320 cases eligible for the study. When comparing CXP-extracted data against manually assessed EMRs, the recovery rate was 95.6–101.1% over the years with 96.1% weighted average sensitivity. Conclusion: Utilisation of the CXP software can be considered as an effective way to extract relevant EMR data without significant errors. Hence, by extracting from EMRs, CXP accurately identifies patients and has the capacity to facilitate research studies and clinical trials by finding patients with the requested code as well as funnel down itemised individuals according to specified inclusion and exclusion criteria. Beyond this, medical procedures and laboratory data can rapidly be retrieved from the EMRs to create tailored databases of extracted material for immediate use in clinical trials.

Publisher

Uppsala Medical Society

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated algorithm for medical data structuring, and segmentation using artificial intelligence within secured environment for dataset creation;European Journal of Radiology Open;2024-12

2. Behind the scenes: Key lessons learned from the RELIEVE-AKI clinical trial;Journal of Critical Care;2024-10

3. Building an AI-based Model to Extract and Classify Contents from Analog Medical History Forms;2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology;2023-12-07

4. A pragmatic methodology to extract anesthetic and physiological data from the electronic health record;Pediatric Anesthesia;2023-12-06

5. Data Extraction and Integration from Unstructured Electronic Health Records;2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3