Effect of biodegradation processes on the composition and structure of asphaltenes in West Siberian oils

Author:

Borisova Lyubov S.1,Fursenko Elena A.1

Affiliation:

1. Novosibirsk State University; Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences

Abstract

NMR spectroscopy in combination with elemental analysis was used to study asphaltenes in biodegraded oils from Cenomanian pools of West Siberia. The sampling depths vary from 680 to 1800 m, formation temperatures – from 40°C to 70°C. For comparison, we used the data on asphaltenes in non-biodegraded oils of different genotypes. Given that biodegraded oils are very heavy (density: 910-950 kg/m3), they are characterized by high boiling point temperatures (145-270°C). Due to the loss of hydrocarbon components, they have higher resin and asphaltene content (9-20%) compared to non-degraded samples. Elemental analysis of asphaltenes in biodegraded and unaltered oils of different genotypes revealed an increasing trend for oxygen content in the asphaltenes from biodegraded samples, which may result from the oxidation of structural blocks of asphaltenes during microbial oxidation. It was shown that the aromaticity of the moderately biodegraded terrestrial-aquatic Novoaganskaya samples tends to increase with a decrease in asphaltene saturation, suggesting that the redistribution of structural groups of asphaltenes may be caused by biodegradation processes. High saturation of asphaltenes in strongly biodegraded Gubkinskaya and Novoportovskaya oils, along with a high degree of substitution of aromatic compounds in asphaltenes in Gubkinkaya oils (terrestrial and aquatic-terrestrial genotype) can be attributed to the formation of asphaltenes during strong biodegradation of hydrocarbon components in these oils.

Funder

Russian Foundation for Basic Research

Publisher

Georesursy

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3