Evidence of carbonate rocks formation on geochemical barriers in black shale on the example of the Bazhenov formation of the Western Siberia

Author:

Eder Vika G.1,Zamiraylova Alvina G.1,Kalmykov Georgii A.2

Affiliation:

1. Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences

2. Lomonosov Moscow State University

Abstract

A comprehensive lithological-geochemical study of rocks of the Upper Jurassic-Lower Cretaceous blackshale Bazhenov formation showed that most of its carbonatized interlayers to the boundaries of packs of different composition differing in carbonate content, degree of siliceousness or clayiness. At the same time, at the boundaries of the Bazhenov formation with host sediments, where carbonate rocks are often found in association with “pyrite” low carbon rocks according to geochemical parameters (degree of pyritization, Mn/Al, Ua), a change in the redox regime is recorded. In the most studied stratum at intervals of occurrence of carbonates, a change in the redox regime is not observed. It is assumed that they existed alkaline barriers, as evidenced by the change in the composition of rocks. The following geochemical barriers (bottom-up along the section) were identified in the Bazhenov formation and its transition to the enclosing sediments, on which evidence of localization of carbonate minerals was found: redox barrier 1 (lower BF boundary), alkaline barrier 1 (border of mixes of kerogen - clay-siliceous low-carbonate and silicites), alkaline barrier 2 (border of kerogen-clay-siliceous low-carbonate and siliceous-carbonate “coccolith” packs); Redox barrier 2 (the upper limit of the BF).

Funder

Russian Science Foundation

Publisher

Georesursy

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3