On increasing the productive time of drilling oil and gas wells using machine learning methods

Author:

Dmitrievsky Anatoliy N.1,Sboev Alexander G.2,Eremin Nikolai A.3,Chernikov Alexander D.1,Naumov Aleksandr V.1,Gryaznov Artem V.1,Moloshnikov Ivan A.1,Borozdin Sergei O.4,Safarova Elizaveta A.1

Affiliation:

1. Oil and Gas Research Institute of the Russian Academy of Sciences

2. National Research Center «Kurchatov Institute»

3. Oil and Gas Research Institute of the Russian Academy of Sciences; National University of Oil and Gas «Gubkin University»

4. National University of Oil and Gas «Gubkin University»

Abstract

The article is devoted to the development of a hybrid method for predicting and preventing the development of troubles in the process of drilling wells based on machine learning methods and modern neural network models. Troubles during the drilling process, such as filtrate leakoff; gas, oil and water shows and sticking, lead to an increase in unproductive time, i.e. time that is not technically necessary for well construction and is caused by various violations of the production process. Several different approaches have been considered, including based on the regression model for predicting the indicator function, which reflects an approach to a developing trouble, as well as anomaly extraction models built both on basic machine learning algorithms and using the neural network model of deep learning. Showing visualized examples of the work of the developed methods on simulation and real data. Intelligent analysis of Big Geodata from geological and technological measurement stations is based on well-proven machine learning algorithms. Based on these data, a neural network model was proposed to prevent troubles and emergencies during the construction of wells. The use of this method will minimize unproductive drilling time.

Funder

Russian Academy of Sciences

Publisher

Georesursy

Subject

Geology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3