Prediction of Hydrodynamic Parameters of the State of the Bottomhole Zone of Wells Using Machine Learning Methods

Author:

Soromotin Andrey V.1,Martyushev Dmitriy A.2,Melekhin Alexander A.2

Affiliation:

1. LLC «LUKOIL-Engineering» «PermNIPIneft» in Perm

2. Perm National Research Polytechnic University

Abstract

The relevance of the development of a methodology for the operational assessment of the bottom-hole formation zone (the permeability of the bottom-hole formation zone and the skin factor) is primarily due to economic considerations, since existing approaches to its definition based on hydrodynamic studies lead to shortages and increased risks of failure to ensure the output of the well. In this regard, the use of modern methods of working with big data, such as deep learning of artificial neural networks, will ensure monitoring of the condition of the bottom-hole zone of the well formation without stopping them for hydrodynamic tests, which will reduce losses for oil production enterprises. It will allow for operational analysis for effective and timely application of intensification technologies, enhanced oil recovery. The authors analyzed the existing methods for determining the bottom-hole characteristics of the formation and machine learning approaches in the direction of solving this problem. The article presents a methodology for the operational assessment of the state of the bottom-hole formation zone: the permeability of the near bottomhole zone (NBHZ) and the skin factor using artificial neural network training approaches based on geological, operational data and the results of interpretation of hydrodynamic studies on the example of sandstones of oil fields in the Perm Region. A fully connected neural network was used to predict the NBHZ permeability. The article presents the results of testing various neural network architectures: the number of layers and neurons in layers with the choice of the best one. Some techniques were used to prevent over-training of models. The author’s methodology for assessing the skin factor of wells is proposed using a comprehensive analysis of the constructed statistical models and training models of artificial neural networks to solve the regression problem. In future studies, it is planned to use recurrent and convolutional neural networks to study the dynamic components of the formation of the bottom-hole formation zone and create an integrated approach to solve the problem.

Publisher

Georesursy LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3