Variations in molecular and isotopes composition of seepage gases in the north-western and south-eastern parts of Lake Baikal

Author:

Vidishcheva Olesya N.1,Akhmanov Grigorii G.2,Kislitsyna Ekaterina V.3,Mazzini Adriano4,Mal’tseva Anna Yu.5,Poludetkina Elena N.1,Bakay Elena A.1,Man’ko Irina E.1,Korost Dmitriy V.1,Khlystov Oleg M.6

Affiliation:

1. Lomonosov Moscow State University

2. Lomonosov Moscow State University; Sevastopol State University

3. Beicip-Franlab

4. University of Oslo

5. Skolkovo Institute of Science and Technology (Skoltech)

6. Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Abstract

The paper presents results of gas-geochemical studies of bottom sediments and petroleum potential assessment of Baikal Rift Basin. During the expeditions of the Class@Baikal project in 2014–2019, gases from the Lake Baikal bottom sediments were analyzed. The results showed a clear difference in chemical and isotopic composition of the seeping gases collected in the northwestern and southeastern parts of the lake. The seepage released from northwest part were relatively enriched by methane and had a low concentration of C2+ compounds. The seepage gases had relatively lighter carbon isotopes composition of CH4 (from -72,7 to -50,1 ‰ VPDB) and the high variability of δ13C in C2H6 (from -65 to -22 ‰ VPDB). The gases released from southeastern part of the lake had an increase in C2+ compounds and had relatively lighter carbon isotopes composition of methane (from –57,2 to –41,0 ‰ VPDB). The carbon isotopes composition of ethane varies from -32 to -25 ‰ VPDB. Asymmetric structure of the Baikal rift basin and various processes of gas migration within it might cause the variations. Diffusive process led to the lighter carbon isotopes composition of the seepage gases from the northwestern part of lake and the gas molecular composition enrichment by methane. Such molecular and isotopic fractionations caused by geochemical processes helps to understand the migration of gas from source rocks to the earth’s surface. Similar geochemical indicators of fractionation should be taken into consideration when assessing oil and gas source rocks and basin potential from gas geochemical studies data.

Publisher

Georesursy

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3