Postprandial hypoglycemia after upper gastrointestinal tract surgery: prevalence and pathophysiology (part 1)
-
Published:2021-11-27
Issue:4
Volume:49
Page:285-296
-
ISSN:2587-9294
-
Container-title:Almanac of Clinical Medicine
-
language:
-
Short-container-title:Alʹm. klin. med.
Author:
Yukina M. Yu.1ORCID, Chernova M. O.1ORCID, Troshina E. A.1ORCID, Evdoshenko V. V.2ORCID, Platonova N. M.1ORCID
Affiliation:
1. National Medical Research Center for Endocrinology 2. Institute of Plastic Surgery and Cosmetology; N.I. Pirogov Russian National Research Medical University
Abstract
Nowadays obesity is a major health problem worldwide. Surgery is the most promising treatment for morbid obesity. There are two types of bariatric procedures, one to reduce the food intake volume and the other to limit the absorption of nutrients. Despite the indisputable advantages of bariatric surgery for weight loss, it is necessary to remember the potential risk of severe complications, such as hypoglycemic syndrome at 2 to 3 hours after ingestion of rapidly absorbable carbohydrates manifested by adrenergic and neuroglycopenic symptoms. According to the literature, the prevalence of post-bariatric postprandial hyperinsulinemic hypoglycemia (PHH) varies from 10% to 75%. PHH in post-bariatric patients should be differentiated from the syndrome of non-insulinoma pancreatogenic hypoglycemia and from insulinoma; however, these diseases are described also in patients after bariatric surgery.The mechanisms of PHH as an outcome of shunting bariatric procedures are currently not fully clear. According to the recent studies, incretin hypersecretion in response to the accelerated flow of carbohydrates into the small intestine plays a leading role in the inappropriate excess production of insulin by the pancreas. In addition, there are hypotheses on a slower normalization of insulin production during more rapid bodyweight decrease and regression of insulin resistance, the role of alpha-cell dysfunction, disturbed negative feedback between insulin and ghrelin, compensatory hyperplasia and hypertrophy of the remaining enterocytes (including L-cells), changes in gut microflora, bile acids level and composition. A number of other mechanisms have also been proposed that require further studies.
Publisher
Moscow Regional Research and Clinical Institute (MONIKI)
Reference81 articles.
1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766-781. doi: 10.1016/S0140-6736(14)60460-8. 2. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32(9): 1431-1437. doi: 10.1038/ijo.2008.102. 3. Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, overweight, and obesity. JAMA. 2005;293(15): 1861-1867. doi: 10.1001/jama.293.15.1861. 4. Stunkard AJ. Obesity: risk factors, consequences and control. Med J Aust. 1988;148(S1):S21-S28. doi: 10.5694/j.1326-5377.1988.tb101156.x. 5. Stunkard AJ. Current views on obesity. Am J Med. 1996;100(2):230-236. doi: 10.1016/s0002-9343(97)89464-8.
|
|