Reconstructing Bayesian networks on a quantum annealer

Author:

Zardini Enrico,Rizzoli Massimo,Dissegna Sebastiano,Blanzieri Enrico,Pastorello Davide

Abstract

Bayesian networks are widely used probabilistic graphical models, whose structure is hard to learn starting from the generated data. O'Gorman et al. have proposed an algorithm to encode this task, i.e., the Bayesian network structure learning (BNSL), into a form that can be solved through quantum annealing, but they have not provided an experimental evaluation of it. In this paper, we present (i) an implementation in Python of O'Gorman's algorithm, (ii) a divide et impera approach that allows addressing BNSL problems of larger sizes in order to overcome the limitations imposed by the current architectures, and (iii) their empirical evaluation. Specifically, several problems with an increasing number of variables have been used in the experiments. The results have shown the effectiveness of O'Gorman's formulation for BNSL instances of small sizes, and the superiority of the divide et impera approach on the direct execution of O'Gorman's algorithm.

Publisher

Rinton Press

Subject

Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3