Abstract
We try to minimize the number of qubits needed to factor an integer of n bits using Shor's algorithm on a quantum computer. We introduce a circuit which uses 2n+3 qubits and O(n^3 lg(n)) elementary quantum gates in a depth of O(n^3) to implement the factorization algorithm. The circuit is computable in polynomial time on a classical computer and is completely general as it does not rely on any property of the number to be factored.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献