Author:
Amento Brittanney,Rotteler Martin,Steinwalds Rainer
Abstract
Elliptic curves over finite fields ${\mathbb F}_{2^n}$ play a prominent role in modern cryptography. Published quantum algorithms dealing with such curves build on a short Weierstrass form in combination with affine or projective coordinates. In this paper we show that changing the curve representation allows a substantial reduction in the number of $T$-gates needed to implement the curve arithmetic. As a tool, we present a quantum circuit for computing multiplicative inverses in $\mathbb F_{2^n}$ in depth $\bigO(n\log_2 n)$ using a polynomial basis representation, which may be of independent interest.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献