Author:
Maslov D.,Mathew J.,Cheung D.,Pradhan D.K.
Abstract
We consider a quantum polynomial-time algorithm which solves the discrete logarithm problem for points on elliptic curves over $GF(2^m)$. We improve over earlier algorithms by constructing an efficient circuit for multiplying elements of binary finite fields and by representing elliptic curve points using a technique based on projective coordinates. The depth of our proposed implementation, executable in the Linear Nearest Neighbor (LNN) architecture, is $O(m^2)$, which is an improvement over the previous bound of $O(m^3)$ derived assuming no architectural restrictions.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献