Abstract
Motivated by the Kronecker product approximation technique, we have developed a very simple method to assess the inseparability of bipartite quantum systems, which is based on a realigned matrix constructed from the density matrix. For any separable state, the sum of the singular values of the matrix should be less than or equal to $1$. This condition provides a very simple, computable necessary criterion for separability, and shows powerful ability to identify most bound entangled states discussed in the literature. As a byproduct of the criterion, we give an estimate for the degree of entanglement of the quantum state.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献