Author:
Jozsa Richard,Van den Nest Marrten
Abstract
Clifford gates are a winsome class of quantum operations combining mathematical elegance with physical significance. The Gottesman-Knill theorem asserts that Clifford computations can be classically efficiently simulated but this is true only in a suitably restricted setting. Here we consider Clifford computations with a variety of additional ingredients: (a) strong vs. weak simulation, (b) inputs being computational basis states vs. general product states, (c) adaptive vs. non-adaptive choices of gates for circuits involving intermediate measurements, (d) single line outputs vs. multi-line outputs. We consider the classical simulation complexity of all combinations of these ingredients and show that many are not classically efficiently simulatable (subject to common complexity assumptions such as P not equal to NP). Our results reveal a surprising proximity of classical to quantum computing power viz. a class of classically simulatable quantum circuits which yields universal quantum computation if extended by a purely classical additional ingredient that does not extend the class of quantum processes occurring.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献