Simpler quantum counting

Author:

Wie Chu-Ryang

Abstract

A simpler quantum counting algorithm based on amplitude amplification is presented. This algorithm is bounded by O(sqrt(N/M)) calls to the controlled-Grover operator where M is the number of marked states and N is the total number of states in the search space. This algorithm terminates within log(sqrt(N/M)) consecutive measurement steps when the probability p1 of measuring the state |1> is at least 0.5, and the result from the final step is used in estimating M by a classical post processing. The purpose of controlled-Grover iteration is to increase the probability p1. This algorithm requires less quantum resources in terms of the width and depth of the quantum circuit, produces a more accurate estimate of M, and runs significantly faster than the phase estimation-based quantum counting algorithm when the ratio M/N is small. We compare the two quantum counting algorithms by simulating various cases with a different M/N ratio, such as M/N > 0.125 or M/N < 0.001.

Publisher

Rinton Press

Subject

Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iterative Refinement Quantum Amplitude Estimation;2023 IEEE 16th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2023-12-18

2. Improved quantum supersampling for quantum ray tracing;Quantum Information Processing;2023-09-28

3. Efficient Quantum Counting and Quantum Content-Addressable Memory for DNA Similarity;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

4. Quantum Fourier Iterative Amplitude Estimation;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

5. Quantum Bayesian inference for parameter estimation using quantum generative model;Quantum Information Processing;2023-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3